Shortest path problem considering on-time arrival probability

نویسنده

  • Xing Wu
چکیده

This paper studies the problem of finding a priori shortest paths to guarantee a given likelihood of arriving on-time in a stochastic network. Such ‘‘reliable” paths help travelers better plan their trips to prepare for the risk of running late in the face of stochastic travel times. Optimal solutions to the problem can be obtained from local-reliable paths, which are a set of non-dominated paths under first-order stochastic dominance. We show that Bellman’s principle of optimality can be applied to construct local-reliable paths. Acyclicity of local-reliable paths is established and used for proving finite convergence of solution procedures. The connection between the a priori path problem and the corresponding adaptive routing problem is also revealed. A label-correcting algorithm is proposed and its complexity is analyzed. A pseudo-polynomial approximation is proposed based on extreme-dominance. An extension that allows travel time distribution functions to vary over time is also discussed. We show that the time-dependent problem is decomposable with respect to arrival times and therefore can be solved as easily as its static counterpart. Numerical results are provided using typical transportation networks. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lagrangian Relaxation Method for the Shortest Path Problem Considering Transportation Plans and Budgetary Constraint

In this paper, a constrained shortest path problem (CSP) in a network is investigated, in which some special plans for each link with corresponding pre-determined costs as well as reduction values in the link travel time are considered. The purpose is to find a path and selecting the best plans on its links, to improve the travel time as most as possible, while the costs of conducting plans do ...

متن کامل

Arrival probability in the stochastic networks with an established discrete time Markov chain

The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...

متن کامل

Shortest Path Problem with Gamma Probability Distribution Arc Length

We propose a dynamic program to find the shortest path in a network having gamma probability distributions as arc lengths. Two operators of sum and comparison need to be adapted for the proposed dynamic program. Convolution approach is used to sum two gamma probability distributions being employed in the dynamic program.

متن کامل

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

The critical node problem in stochastic networks with discrete-time Markov chain

The length of the stochastic shortest path is defined as the arrival probability from a source node to a destination node. The uncertainty of the network topology causes unstable connections between nodes. A discrete-time Markov chain is devised according to the uniform distribution of existing arcs where the arrival probability is computed as a finite transition probability from the initial st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009